The nonclassic secretion of thioredoxin is not sensitive to redox state.

نویسندگان

  • Marcel Tanudji
  • Sarah Hevi
  • Steven L Chuck
چکیده

Thioredoxin (Trx) is a cytosolic, redox-active protein that is secreted from many cells and has several extracellular functions. In activated lymphocytes, the pathway of secretion does not involve the Golgi apparatus. Levels of extracellular Trx are decreased by the antioxidant N-acetylcysteine. Hence, the secretion of Trx could be altered by the redox status of the cell or the protein. To study Trx mutants, we characterized the secretion of human Trx from Chinese hamster ovary cells. Secretion of human Trx is unaffected by brefeldin A, slow but efficient, and sensitive to low temperature and factors in serum. We demonstrate that N-acetylcysteine reduces the cellular level of Trx but not the proportion secreted; thus this chemical does not block the nonclassic pathway for Trx secretion. Furthermore, we find that mutations in either the active site or the dimerization site of Trx do not alter its secretion. Thus the nonclassic secretion of Trx is not dependent on the redox status of either the cell or the protein.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Human Thioredoxin System: Modifications and Clinical Applications

The thioredoxin system, comprising thioredoxin (Trx), thioredoxin reductase (TrxR) and NADPH, is one of the major cellular antioxidant systems, implicated in a large and growing number of biological functions. Trx acts as an oxidoreductase via a highly conserved dithiol/disulfide motif located in the active site ( Trp-Cys-Gly-Pro- Cys-Lys-). Different factors are involved in the regulation of T...

متن کامل

Healthy ageing and depletion of intracellular glutathione influences T cell membrane thioredoxin-1 levels and cytokine secretion

BACKGROUND During ageing an altered redox balance has been observed in both intracellular and extracellular compartments, primarily due to glutathione depletion and metabolic stress. Maintaining redox homeostasis is important for controlling proliferation and apoptosis in response to specific stimuli for a variety of cells. For T cells, the ability to generate specific response to antigen is de...

متن کامل

Pathogen-induced interleukin-1beta processing and secretion is regulated by a biphasic redox response.

In this study, we show that IL-1beta processing and secretion induced by pathogen-associated molecular pattern (PAMP) molecules in human monocytes is regulated by a biphasic redox event including a prompt oxidative stress and a delayed antioxidant response. Namely, PAMPs induce an early generation of reactive oxygen species (ROS) followed by increase of intracellular thioredoxin and release of ...

متن کامل

Replacement of threonine-55 with glycine decreases the reduction rate of OsTrx20 by glutathione

Thioredoxins (Trxs) are small ubiquitous oxidoreductase proteins with two redox-active Cys residues in a conserved active site (WCG/PPC) that regulate numerous target proteins via thiol/disulfide exchanges in the cells of prokaryotes and eukaryotes. The isoforms OsTrx23 with a typical active site (WCGPC) and OsTrx20 with an atypical active site (WCTPC) are two  Trx h- type isoforms in rice that ...

متن کامل

Glutathione and thioredoxin redox during differentiation in human colon epithelial (Caco-2) cells.

Cellular redox, maintained by the glutathione (GSH)- and thioredoxin (Trx)-dependent systems, has been implicated in the regulation of a variety of biological processes. The redox state of the GSH system becomes oxidized when cells are induced to differentiate by chemical agents. The aim of this study was to determine the redox state of cellular GSH/glutathione disulfide (GSH/GSSG) and Trx as a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 284 5  شماره 

صفحات  -

تاریخ انتشار 2003